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FOREWORD

This document presents the Final Report on the development and use of

a computer program for "Hydroelastic Modal Studies" for George C. Marshall

Space Flight Center (MSFC) of the National Aeronautics and Space Administration.

This capability was developed as program additions to the NASTRAN (NASA

i Str____uctureAnalysis)computer program and delivered to MSFC for use in the
analysis of the Shuttle ET tank hydroelastlc modes.

i Messrs. D. N. Herring, R. L. Hoesly, and D. L. Herendeen of Universal
i

Analytlcs, Inc. were the primary contributors to the project. Mr. R. 4. McComas

of MSFC monitored the project and also contributed to the testing of the system.

Messrs. D. Harper and J. Moreman of Computer Science Corp. performed valuable

aid in implementing the system at MSFC.

The Final Report is divided into three volumes. This, the first volume,

describes the theoretical basis of the system and results of the test cases.

Also included are a brief su_nary of the project history and explanations

and conclusions based on the results obtained in the contract. The second

' volume contains the Program Documentation and the:third volume serves as a

guidebook co the use of the system.
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Io0 INTRODUCTION

This report describes the technical effort performed in the Implementa-

tion of a gener_l three-dimensional hydroelastic capability in the NASTP,AH

(N___A Str_uctural Analysis) computer program. Although' NASTRAN had provided

capabilities for the analysis of compressible fluids with axlsymmetrlc

geometry, the Space Shuttle External Tank Analysis required more general

capability and more efficient solution procedures. The basic approach

described in this report extends the capabillties to provide for arbitrary

fluid shapes, includlng tilted free surfaces, and allow for more efficient

methods of obtaining the solutions.

One goal of the program development was ro provide a general method

for analyzing the combined mode s,_apes of arbitrary fluid and structure

finite element models. The fluid is modeled with three-dimensional solid

elements with options for tetrahedron, wedge, and hexahedron shapes. The

i elements are connected to fluid grid points which define the pressure in the

fluid at the specified location. The structure may be modeled arbitrarily

using the existing NASTRAN elements. The fluid/structure interface and the

free surface are defined by the user with special NASTRAN boundary elements.

A special purpose mesh generator program has been provided to generate the

actual NASTRAN data cards for the fluid, the structure, and the boundary

elements for typical tank-type models.

A second goal of the project was to formulate the matrices to provide

efficient solutions for large-order problems. The structure matrices are

processed separately and may be reduced using matrix condensation procedures

(_MIT) or through a modal formulation using the normal modes of the empty

I structure as solution coordinates. The fluid matrices are then transformed
and connected to the reduced structure coordinates resulting in small, sym-

i !
i metric, solution matrices. This approach is particularly valuable when

several different fluid levels are to be analyzed for one structure. The

i_ structure formulation and reduction is processed only once. The additional

calculations for each different fluid case require only fluid matrix opera-

_ tions and solution processing.

! !
1-1 ;

'T" -

:z _.1

]979017"180-007



User convenience was provided in the system with the implementation of

several alternate solution path_ and modeling options. These options, which

allow a wide variety of problem types and provide the user with efficiency

and accuracy trade-offs, are summarized below.

• The Direct formulation option uses structure grid point coordinates

and free surface displacements as solution degrees of freedom. The

structural matrices may be redLtced using the NASTRAN matrix conden--

sation technique (ASET or _MIT data) for more economical processing

of large-order problems.

• The Modal formulation option uses the mode shapes of the empty

structure as generalized solution coordinates. With this option,

the structure may be represented accurately by relatively small

matrices.

• Gravity effects are provided which affect both the free surface

displacements and the struc_ure-fluld interface. Free body motion

of the whole system is not constrained as in some other methods.

The gravity effects may also be ignored by simply providing

single-point constraints on the free surface pressure coordinates.

• Symmetric systems with symmetric or anti-syn,netrlc solution cases

may be modeled by providing slngle-point constraints on structure

displacement and fluid pressure degrees of freedom.

• Compresslbillty effects may be provided for cases in whlch the fluid

is completely enclosed. (Any constrsints on the fluld pressure

coordinates will act as an opening.) A factor is provided to define

the overall pressure versus volume change. An alternate is provided

to constrain the volume change to zero for pure incompressibility.

• Restart logic is provided in the DMAP (Direct Matrix Abstraction

Program) to allow changes in the fluid model _rlthout reformulating

the structure matrices_ or generating structure modes. A user

parameter provides this control, independent from the NASTRAN logic.

All of the above _apabilltles were specifically designed for the large-

order finite element models anticipated for use in the analysis of the Space

Shuttle tanks. In many c_ses_ the actual computer hardware availability

1-2

1979017180-008



i would be a significant factor in solving the real structures. Thus, the

design complained the alternate paths to obtain either accurate results with

= long run times or less accurate results with _horter run times and faster

turnaround.

The effort for the project was subdivided into five major tasks, each

defined by delivery items and milestones. Brief descriptions of _he tasks

and the problems encountered are summarized below:

I

TASK I - Preliminary Speciflcatlons: The complete theoretical design, i
i

user inputs, and program flow was defined in this documentation.

The report was delivered on schedule within one month of the con- !

tract start date of March I, 1976.

TASK II - Phase I Program: The basic hydroelastic capabilities were

installed in a Levell5.9 version of NASTRAN. The program was

installed at MSFC on the IBM 360/65 computer on schedule during the

week of APril 19. The basic capabilities included the fluid elements,

free surface elements, and non-overlapping fluld-structure boundary

definitions. Results were obtained for the hemispherical tank test

problem.

TASK III - Phase 2 Program: The final version of the program was

installed on the Level 16.0 version of NASTRAN. The delivery, on

August 9, 1976, to MSFC was delayed approximately one month due to

delays in the delivery to MSFC of this version of NASTRAN by the NASA

distribution center.

TASK IV - Demonstration and Training: This task consisted of three

pa_ts - (i) demonstration of the system using small problems with

known solutions, (2) instructln Z MSFC personnel in the use and

maintenance of the system, and (3) assisting MSFC personnel in the

modeling and execution of the large-order Space Shuttle tank problems.

The first two tasks were performed at MSFC during the week of !

August 9, in conjunction with the program delivery. The third task i

continued through the remainder of the contract. I

TASK V - UNIVAC 1108 Conversion and Final Report: The original schedule

assumed that the 1108 version of NASTRAN Level 16 would be available i

:o NASA by October 1976. The IBM hydroelastic program would then be

!

1-3
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i

converted to the 1108 at MSFC by UAI. However, the actual receipt

of the 110.8Level 16 NASTRAN did not occur uutll January 1977,

delaying the project by three months. The final report, wnlch

consists cf program documentation, awaited the 1108 conversion and

the execution by MSFC of the large-order Shuttle tank problems.

However, preliminary versions of the user documentation were

delivered to MSFC in August 1976, thereby allowing knowledgeable

use of the program. This final report, contained herein, completes

the outstanding contract deliverables.

The theoretical approach and the detailed analytic steps used in the

formulation of the problem are described in the following theoretical

approach chapter. The results of the test and demonstration effort are also

summarized In this volume of the report. Volume II of this report contains

the descriptions of the user-supplled data to the program and instructions

for its use. Volume III contah_s the programmer's reference material

describing the new code and modifications to NASTRAN.

. 1-4
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2.0 THEORETICAL DEVELOPME_IT

in this section the theory is developed for _he general three-dimensional I

hydroelastic analysis in NASTRAN. Both the structure and the interacting

f,fluid will be idealized as general, three-dimensional finite element models. !

Effect_ of f::ee surfaces and steady-state gravity will be included. The i

•fluids are assumed to be incompressible, irrotatlonal, and non-vlscous.

Small motions of both structure and fluid .elan;re to the static solu£ion •

will be analyzed.

_ The basic development of the finite _'_ment ¢:=mtions for small motions

of fluids is described in Reference i. In Ruf._ence 2, the basic equations

are cast in the form of integrals representing the time derivatives of Energy

and Work using the fluid pressures as the ur.known coordinates. The scalar

pressures, rather than three displacements, will be used as degrees of freedom

at each point in the fluid_ which avoids extraneous rotational motions and

i directly provides for incompressibility. The disadvantage is that the struc-

ture and fluid are not automatically connected at their boundary. The !

pressures in the fluid must be related to the displacements of the boundaries

through area factors and flow relatlon_hips.

2.1 FLUID FIELD EQUATIONS

In Reference 2 the fluid field equations are developed in the form of

energy integrals using principles of variational calculus. The basic result

for the compressible case is the equation:

where: p is the pressure

is the time derivative of pressure

8 is the bulk modulus

is the mass density

V is the volume

dS is an incremental surface vector (outward) I

V is the vector gradient opera,or i

6 is the variational operator

J
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With the incompressible fluids, the bulk modulus is assumed infinite and
2

the _ term disappears. On the exterior surface the pressure gradient may be

replaced with the acceleration vector using the basic momentum equation:

Vp - pu (2)

Equation (i) therefore becomes:

6 _ (Vp • Vp) dV + _pg • dS = 0 (3)
v s

or

6u + 6w = 0 (4)

In the finite element method of solution, a set of variables, Pi, eq_lal to

the value of p at specific points, is chosen and the volume is divided into

subreglons, called fluid elements, with vertices defined by the location of

the variables. As with structural finite elements, a "stiffness" matrix [K]

is formed frcm the potential energy U by the equation:

Kf = _2U (5)

iJ _Pi _Pj

The "equivalent" potenti_l energy for each subregion is, from Eq. (5),

U = I 2_VP • VP dV (6)v

The pressure field for each 3ubregion (fluid element) is dependent on the

pressures Pl at its vertices.

The second term of Eq. (5) defines the "load" vector, {Q}, on the boundary,

which excites the fluid. For each point J on the boundary the load'ng value is:

Since the accelerations, _, are defined by the structure, _,transformation

matrix may be developed from Eq. (2) such that:

2-2

1979017180-012



{Q) = [BI{U} (S)

where

!

i BiJ - _Pi _uj s pu dS (9)

I Note that the units of B are area and the units of Q are volume per time

i squared.

! If we combine Eqs. (4), (6), (7), 'and (8), the resulting matrix equation

i relating the _tructure and fluid c_ordinates is:

i [Kf]{p} + [B]{5} = 0 (I0)
!

On the other hand, the fluid effects the structure by applying forces over

the structure surface area. The incremental work done on the structures

Ws, is:

= P(_u • d _) (Ii)
6Ws s

The force on each point structure degree of freedom, Fj, is obtained from the

! work by the equation:

b. _(_Ws)

Fj = 8(_uj) (12)

On each finite boundary area the displacements u are functions of the grid

point displa:ements uj. Equations (ll) and (12) are evaluated resulting in

the transformation matrix, A, where:

{F} = [A]{p} (13)

andf

_lj '_ _ui _pj podS (14)
S

Comparing Eqs. (9) and (14) we observe that

2-3
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[A] = [BT] (15)

If [Ms] and [Ks] are the mass and stiffness matrices of the structure, the

matrix equation for the structure coordinates is

[MS]{u) + [KS]{u} - {F} = {0} (16)

or, from Eq. (12):

[MS]{u} + [KS]{u} _ [A]{p} = {0} (17)

Equations (i0) and (17) become the system of equations for a solution.

2.2 FINITE FLUID ELEMENTS

Three types of fluid elements are used to represent the three-dimensional

fluid: the 4-point tetrahedron, the 6-point "wedge," and the 8-point hexahedron.

The wedge and hexahedron elements are fabricated from three and ten tetrahedra,

respectively, as _hown in Figure i. The pressure function within each tetra-

hedron is assumed to be a linear function in three directions, or:

P = qo + qlx + q2y + q3z (18)

I

The transformation between the pressures at the grid points Pi' i = 1,2,3

and 4, and the coefficients q may be obtained from the matrix equation:

I xzI%1{p} P2 1 x 2 Y2 z2 ql= = (19)

P3 i x3 Y3 z3 q2

P4 ' 1 x4 Y4 z4 q3

The matrix in Eq. (19) may 5e inverted, giving the matrix H, where

{q} = [H]{p} (20)

or

qK = _ _jPj (21)3

i# 2-4
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! 1 | 3
2 2

{b) Wedge and One of its Jix Decompositions.

1 2

8 8 $ D _1 ?

2 | l

W

! 2
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(c) Hexahedron and its Two Oecompositions.
f'

: FIGURE I. TIIREE-DIMENSIONAL FLUID ELEMENTS
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The vector gradient of the pressure is obtained from Eq. (18), giving:

Vp = ql _ + q2 j + q3k (22),3

! 1,,

I : From Eq. (5) in the previous section, the energy function, U: in the element
: _ iS :

U = 7 Vo_ (Vp" Vp)dg =

T- From Eq. (6), the stiffness matrix terms for the element are:

• 82U

. _lj - Bpl _pj (24)

i Uslng the "chd_.n" rule for differentiation, we obtain

I i i 3 3 _2U _qK _q£

Kij -- 2 = 8qk 8q£ 3pi 8pj

! and from Eq. (21) :

• 3 3 i

i Kij = _ _ _ _k_HkiH£1 (26)k=l £=i

(Note: 6k£ = 0 if k # _ and 6k£ = i if k = %)

Equation (26) may be cast as a matrix product defining the fluid "stiffness"

matrix for the tetrahedron, [Kf], as:

I [Kf] = I [sTI[HI (27)
P

i The wedge and hexahedron elements are generated by adding the appropriate

stlffnesses for the component tetrahedra.
;

2.3 FLUID/STRUCTURE BOUNDARY MATRICES

; As defined in _q. (14) of the general development, the area matrix [A] is

defined as

-- 2-6
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[ pu dS (28)Ai3 - _ui _PJ -s

I where u and p are the displacements and pressures at the surface, S. The

i of the structure and the fluid the

intersecting areas are specified by user

as fluid-structure element pairs. From elementary geometry, the locations of

r the fluid points and the structure points are obtained in a coordinate system
I

on the fluid face. Equation (28) is evaluated for each intersecting area of

structure and fluid. For simplicity, only triangular structure elements are

considered below. Quadrilateral elements are treated as four overlapping

triangles.

Several possible examples of overlapping areas are shown in the sketch

below.

Fluid

/_ructureI

, (a) Structure

i

L

Structure Structure

Fluid Fluid

(c) (d)

Clearly, the number of combinations is too numerous to identify each case

and provide a specific set of equations. Rather, a general algorithm will be

developed below. The basic logical steps, listed below, will apply to all

cases.

2-7
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i

I. Test the location of each structure point and determine if it is inside

i the fluid area.

i 2. If all structure points lie outside the area, search for any intersection
points, el,'where two lines cross.

3. If no intersections occur, one of the areas encloses the other area or

they are disjoint. For the first case, the inside set of points determines

the boundary and the search below is skipped. When the areas are disjoint,

a fatal error has occurred.

If intersections occur, the overlapping area is determined as follows.

4. Starting with a co-_on edge point or the location of a structure point

lying in the fluid area, the points describing the polyhedron area are

calculated. An example is shown in the sketch below.

i %
V_ Structure

I.

%

SL

The .ist of polnts,s, defining lhe area are:

sI - structure point

eI - edge point

f2 - fluid point

f3 - fluid point
I

e 2 - edge point

I

, The area of the polyhedron is obtained from the llne integral:

! A - - I y dx (29)
J

] 2-8
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I _ 5. Using the finite element displacement functions, the coefficients Csj(Xs,Ys)
are evaluated at all points on the polyhedron. The pressure applied to each

point In the area is:i

I is = _- (30)a CsjPj
!

, where Ps is the pressure on each polygon point and pj is the pressure at

corner j of the fluid element.

In triangular fluid elements the pressure distribution is
1
w

. P = qo + qlx + q2y (31)

Evaluating the equation at the four corners results in the formula:

J

qo = Pl

= X

ql _ (P2 - Pl ) (32)

q2 = P3 - Pl --- (P2 - Pl)
x2

The coefficients C(x,y) are therefore:

xiY (x20ello l-q+ _q-

I -iyi(-2)Ci2 - x2 Y3 _3 (33)

--4

i Yt

P Ci3 =" yqi

On quadrilateral areas, an isoparametrtc distribution of pressure is used.

The isoparametric coordinates are shown in the sketch below.

2-9
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4 /_'"-_ = i, n = 1

[

y q

I --_-_=i, q=0

The pressure distribution is:

(

p = flp I + f2p2 + f3p 3�f4p 4 (34)

where: .fl = (I - _)(I - n)

f2 = _(1- n)

f3 = _

f4 = (1- _)n

and the corresponding location definitions are

x(_,q) = flXl + f2x2 + f3x3 + f4x4

(35)

Y(_,q) = flYl + f2Y2 + f3Y3 + f4Y4

If xi and Yi for a point on the element are given, the twn equations

are used to obtain the two unknowns _ and n. Eliminating n, a quadratic

equation results for _:

2

aEi_ + bEi_ + c = 0 (36)

where:

a = - x2(Y 3 - y4)

b = xf(y3 - y4 ) - w2Y 4 - yi(x3 - x2 - x4) (37)

c = xiY4 - YiX4

2-10
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I
I

After _i is obtained from the equation above, the value for q calculated

from the equation:

Y

_i = Y4 + _(Y3 - Y4 ) (38)

The resulting equation for the pressure coefficient at point i due to

pressure at corner grid point J is:

Cij = f.(_i,qi ) (39)3

_ 6. The loads will be distributed to the structure points according to the

location of each polyhedgon point on the structure area. The total force

and center of force will be preserved. For each point, i, on the polyhedron,

the load factors for the structure points at locations (xl,Yl) , (x2,Y2) , and

(x3,Y3) are obtained from the determinants of matrices as shown below:

fli = A x2 Y2 (40)

i
_ x3 Y3

1 xI Yll
1

If2i = _ 1 xi Yl (Zl)

1 x3 Y3

fBi = A x2 Y2 (42)

xl Yl

. 7. The pressures on the polygon points are integrated over the area according

to the following rules:

. a. The average pressure of _iI points acts over one-half the area,

located at the center of the area.
4

b. The pressure at each point acts locally over an area of A/2N.

1
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i-
c. The total force at the center is divided equally among the polygon

I i-
_ points. The local forces are applied at the adjacent points.

The resulting equation for the effective polygon area coefficients is:i-

" F = _ AisPs (43)
r-

J

! where:

A

I 2N(N-i) s # k

b _k S

i i A s=k
• _ 2N

i The resulting area factor matrix is defined by the matrix product:

i [Aij] = [f]T[A][C] (44)

In order to provide force vectors in three dimensions, each row of

! the matrix A is expanded to three rows by multiplication with the unit

normal vector E 1.

2.4 GRAVITY EFFECTS

When a steady-state acceleration such as gravity is present in a hydro-

elastic probl_m, additional terms must be added to the fundamental equations

to account for the steady-state pressure gradient. In the fluid formulation,

the Euler equations assume that the pressure is defined at points fixed in

space, and the fluid particles flow across the point. In the structure for-

mulation, a Lagrange assumption is used whereby the grid points remain

.- attached to the moving system, and the forces are applied at the displaced

location. These contradicting assumptions require formulation of additional

matrix terms as developed below.

1
2.4.1 Gravl.ty Effects on the Structure

i A change in force on the structure is illustrated in the sketch below.

I

t 2-12
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/ Original Position, /

it // Displaced. Position

i: /

/ "_ Z

I. Structure

i
L

The normal force, Fn, required to support the pressure is:I (

-- - Alp i + p(g • ui)ln (45)

The term Api is included in the area matrices discussed previously. The

second term on the rlght-hand side of Eq. (45) takes the form of a stiffness.

i The matrix takes the form:

i = [K (46)

t' Fz! _z

!:
i:. where

tK]= - OI IA (47)
n

Note that the matrix is not symmetric if n _ O. This violates the fundamentalx

rule that symmetric system matrlcas must occur for the conservation of energy.

Another method of viewing the problem resolves the non-symmetric issue.

If the structure moves, the total fluid weight changes as illustrated below.

Original Position-----_i//" " -

, / Displaced Position

i 2-13
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F
I The additional weight on the structure, w, due to the motion is:

i w = 0gAun = 0gA(_" _) (48)

Since each point may move independently of the others, the increased vertical
force must be applied locally and the force required to support the load is:

i F = - pgA(n • _) " (49)
t z

i Th.e corresponding stiffness matrix is:
i
i

]__ [0 0

- (50)
- [K] = pgA nx nz

t

Compari_ Zqs. (47) and (50), we observe that the lower right-hand terms are

equal, but the off-diagonal terms are reversed. The conclusion is that each

approach missed an off-diagonal term, and the true result is:

[0°][AK] = - pgA (51)
n x n

These stiffness terms may be processed along with the fluid-structure areab

_ coefficients described in Section 2.3. The intersecting structure fluld areas

I are used to define the factor A. The displacements and resulting forces are

I assumed to be variable on the surface, dependent on the corm'coted grid points,and the actual stiffness will be:
!.

, . r

. _2Uz ] (52)+ _ui_uj nz dA

where u and u ar.elinear functions of the grid point displacements. These
X Z

integrals are evaluated in a manner similar to those developed in the area

matrix calculations.

i I 2-14
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i 2.4.2 Free Surface Effects4

A free surface is defined as a moving boundary with no restraints. When

I gravity effects are neglected, the boundary condition, p = O, may be enforced

by simply applying single-polnt constraints (SPC) to the input which causes

the rows and columns corresponding to zero pressure to be removed from the

matrix equations. However, when gravity is present we must remember that the

pressure may not be zero since it is actually measured at a point fixed in

space. For an upward displacement, uf, of the free surface, the pressure at

a point defined at the surface is:

l P _ 0g uf (53)

(For a downward displacement, it is alse convenient to use the same equation,

measuring a fictitious negative pressure above the surface.)

In the actual solution of Lhe free surface points, it is convenient to

implement Eq. (53) in the following form:

- Ap + 0gA uf = 0 (54)

where A is the free surface area associated with the fluid poi'at. The terms

in the above equation maybe implemented directly into the matrix formulation.

In effect, the free surface points are treated as though they were structure

points, although no structural stiffness is present. The area factors A are

identical to the fluld/structure interface matrices defined previously im

Section 2.3. The terms (pgA) are, in effect, positive springs providing the

stiffness te_ns, [Kfg], for the normal'displacements, uf, and causing the

"sloshing" modes.

Furthermore, the effects of the displacements at the fr_e surface excite

the fluid in the same manner as the structure dlsplacements.. The generalized

forces on the fluid are:

{Qf} = - [A_]T{uf} (55)

where [Afg] is a diagonal matrix of area factors connecting each free surface

displacement to the corresponding pressure degree of freedom.
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_i 2.5 SYSTE24MATRIX SOLUTION

-
I The previous development has provided the basic matrix equations to

a. define the fluid, the fluid structure interface, and the free surface. In

i review, these equations are:

FLUID:

[Kf]{P} + [As]T{us} + [Af]T{_f} = {0} (56)

STRUCTURE:

[Ms]{us} + [Ks + AKg]{U s} - [As]{p} = {F} (57)

where [MS], [Kg], and {F} are the conventional muss, stiffness, and

load matrices for the structure.

FREE SURFACE

[K_]{uf} - [Af]{p} = {0} ;;: (58)

2.5.1 General Formulation

" For the general case, when gravity is present, all the above matrices

occur. The desired form of the solutlon matrlces are:

[M]{_} + [K]{u) = {P} (59)

where {_} is a vector containing both structure and free surface displacements

and {p} is the applied load vector. From Eq. (56), it is apparent that:

{P} ffi - [Kf]-I[A]T{ h} (60)

IAT] (61) :where [A]T = [AT '

i U s

and {u} = (62) i

i
Substituting into Eqs. (57), (58), and (59), we obtain:

i
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is+0i[M] = -0- 0- + [_][Kf]-I[A]T (63)

[ ijKs + AK ,

We observe that the matrices [M] and [K] are symmetric, and may be processed

as normal structure matrices.

Unfurtunately, the effect of the fluid, mass terms in Eq. (63) is to fill

the mass matrix., resulting in potentially tlme-consuming solutions for large
L

structures. However, it is typical for large structures that a reduction

procedure is employed. Defined symbolically, this reduction may be defined

as :

I {us} = [g]{ua} (65)
i"

i where the vector {ua} is defined by a much smaller number of degrees of freedom

th_n_ {,Is}. Components .of the vector {u s} are removed by application of con-

.,' -_tz ,!nts through the "Guyan" reductien procedure i_r through e. modal formulation.

_: '_ the columns of [G] are eigenvectors of the empty structure normal modes.

Tile structure matrices are reduced accordingly with the equations:
¢

[Mal = [GIT[M I[G] (6_i)
S

[Ka] = [GIT[K ][GI (67)S

Equation (60) may be rewritten as._

i {P} = [Kf]-I[A.]T{u} (6B)

and {u} = -u-f- (70)I -

i

T .

t
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The reduced mass _nd stiffness matrices are:

r_!o-l

i LOlOj

r : _ = Ka + _g ....
IKg I (72)
I fJ

where _g = GTAKgG (73)

Note that, as the size of the matrix [A] is reduced, the evaluation of the

matrices for Eqs. (71) and (72) will be more economical. In th; actual

formulation, th_ columns of the matrix [A] may be treated as load vectors on

the structuce, and the NASTRAE reduction procedure for the load vectors may

be applied directly. The gravity "stiffness" matrix [_t] may be reduced in

the NASTRAN system with the same algorithm as the mass matrix reduction process.

2_5.2 Non-Gravity Case

When tb_ effects of gravity are ignored, the free surface is constrained

such that p = 0. In this case, the free surface points are removed from the

solution vector, and the solution matrices are:

[M] = [Ms] + [A][Kf]-I[A] T (74)

[K] = [K s ] (75)

where {u} = {us} (76)

[A]T = [G]T[As]T (77)

and [Kf] is the matrix [Kf] with free suzface rows sud columns removed.

2.5.3 Co_etely Enclosed Fluid

When the fluid boundary i_ completely enclosed by the structure and free

surfaces and no constraints are applied to the fluid points, the incompressible
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fluid effects must be considered. The incompressible fluid, in effect,

• | provides a constraint on the motions of the boundary such that the net flow

• into the fluid is zero.

I Furthermore, the fluid matrix [Kf] is singular _ecause a constant pressure

defines zero flow. Mathematically, a unit pressure vector, defined as {I},

produces the result::

[Kf]{I} = {0} (78)

Since the matrix [Kf] has a singularity of order one, a constraint must be

i supplied. Because of incompressibility, we know that the total flow must bezer,J. The basic pressure-flow relationship is:

, [Kl{p} = {Q} (79)I"

I The "average" input flow Is:

= N Qi -- N [IJfq} (80)

where [I] is a rowvector containing unlt values.

Subtracting the average flow from each point, we obtain a flow vector,

{Q'}, wlth a zere total value, where:

{q'} = {q}- _{_} (81)

1 {I}[IJ]{Q} (82)or {Q'} = [[_1-_

= [H]{Q} (83)

i
The pressure is obtained by removing one row and column, and solving the

basic matrix equation in partitioned form:
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I

where _ is an undetermined constant. Noting that the {I} vector may be

, ignored, we obtain:

;_ pj' = K-ljjQ_ (85)L •
? The coefficient _ may be obtained by restricting the pressure result to

have an average of zero, or:

_ [[lJ{p } + NO] = O (86)

Therefore, _ is obtained from the equation:

1

O. = - _" [IJ{p'.} (87)3

Note that Eq. (84) is completely satisfied if Eq. (87) is substituted into

Eq. (84) and if:

N

Kil +_Kij : 0 (88)
_ 2:

N

and Q1 Q = 0 (89)

The first condition is satisfied by Eq. (78). The second condition is

satisfied by Eq. (82), thereby producing a unique solution to the basic

equation.

The resultant solution pressure vector {p} is:

[1]ij{p} : , {p'} (90)i
[i] {z} I.I.I

J

Observe that the pressure transformation matrix in Eq. (90) is identical

to the transpose of the flow transformation, [Hj], where:

{Q_} = [Hj]{Q} (9i)

{p} = [Hj ]T{p_} (92)
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t

' [ Z{z}l[z ] z ]! and [Hi] = - N I - _ {I}[I] (93)

i

_ The matrix "inverse" may be written symbolically as:

i [Kf]-I = [_]T[Kjj]-I[Hj] (94)

Furthermore, it may be proven by examples that [Kjj] may be obtained by par-

titioning any fluid point, PI' from the matrix. If the matrix [Kf] is singular

(of order i), the results are exactly the same regardless of the choice.

2.5.4 Incompressible Fluid Restraint

As described in Sectio_ 2.5.3 above, the net volume change due to bo_dary

movement is eliminated from the fluid inertia matr_. However, the incompressi-

bility of the fluid requires that the vol,_e change due to structure and free

surface displacements be restricted. This constraint could be implemented by

supplying a constraint equation of the form:

AVol = E E A..u. = 0 (95)
i j 31 3

, or, in terms of the matrices:

AVol = [I][A]T{u} = 0 (96)

For this approach, one of the displacements, uj, is removed from the

matrices, redistributing its associated mass and stiffness to _he other degrees

of freedom.

In the alternate method, we add a compressibility factor such that the net

volume change will be s_ll. If we define the factor, B, such that for the

static case:

{p} = {I} B AVol (97)

then the forces, {F}, on the structure are:

{F} = [A]{p} (98)

or {F} = [Kc]{U} (99)

where [Kc] = B[A]{I}[IJ[A] T (i00)
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i The matrix [Kc] provides for the overall compressibility of the system

when the fluid is completely enclosed. It is added to the system stiffness

i matrix and acts as a single sprin_ conn,.ling all surface displacement degrees
of freedom.

The factor B may be obtained from the physical properties. The approximate
value is:

2
B = P_

Vol (i01)

where a is the speed of sound in the fluid.

Extremely large values of B are to be avoided, since matrix numerical con-

J

ditioning problems will result when the terms in the matrJ_ [Kc] are orders 1

of magnitude larger than the structure terms. For most realistic fluid-

structure combinations, this problem will not occur.
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3.0 TEST RESULTS

I An extensive test program was performed on the modified NASTRAN system

' i
during the coding effort and following the delivery of the system. The

purpose of the program testing was to ensure correct code and validate the

theoretical assumptions. In the first stage of check-out, problems consisted

of simple one and two fluid element shapes in which the results could be

hand--checked for correctness. This was followed by larger order, more

realistic test and demonstration problems.

, The choice of test and demonstration problems had to be limited to

cases with known results from experimental tests and/or published analyses.

Larger order detailed models representing the Space Shuttle External Tanks

have also been analyzed by NASA using the program. Results of these tests

are forthcoming from NAiA. The basic test and demonstration problems

analyzed by UAI are described below.

3.1 HEMISPHERICAL TANK TEST PROBLEM

3.1.1 Problem Definition

The solution for axisymmetrlc sloshing and hydroelastlc modes in a

full hem'spb_rical tank have been obtained by several methods of analyses

[Refs. 3, 4, _ and 6]. Although the NASTRAN program was developed for

.- general shapes, axls_-mmetric geometries such as this problem may be solved

by modeling a wedge-shaped section with a minimum number of elements and

grid point_

The NASTRAN model, shown in Figure 2, represents a 15° sector, repre-

sented by a single layer of elements. The fluid is represented by wedge,

tetrahedron, and hexahedron elements. The structure is modeled by standard

NASTRAN plate elements. The large sector angle and course mesh were deliver-

ately chosen as representative of the expected modeling practices to be used

when non-axisymmetric three-dlmensional problems are generated.
Q

3.1.2 Comparison of Results

Comparisons of natural frequencies for both slosh modes a,_d structure

interactions (bulge) modes are presented for the reference studies and

NASTR_N in Table I. Slosh mode shapes are shown in F_gure 3.
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128
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iiii iii0 Input Parameters

r = Radius = 200

t = Thickness = 0.I

E = Elastic Modulus = 1.0 x 107

' _ = Poisson's Ratio = 0.33

Ps = Structure Density = 2.59x10 -4

• Of = Fluid Density = 1.06 x 10-4

g = Gravity Constant = 386.90

FIGUP_ 2. FIFTEEN DEGREE HEMISPHERIC_ TANK MODEL
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!

i TABLE I. COMPARISON OF NATURAL FREQUENCIES FOR

] VARIOUS SOLUTIONS OF HEMISPHERICAL TANK

i
I

Natural Frequency - Hertz
.

Type Mode
3-D

Ref 3 Ref 4 Ref 5
NASTRAN

1 0.46 0.43 0.43 0.45

2 0.62 0.62 0.62 0.67
Slosh

3 O.75 O.81 O.76 O.88

b 4 0.86 1.00 0.90 1.13

1 6.69 7.26 6.62 6.87

Bulge 2 9.92 11.47 10.25 10.99

3 12.59 14.56 12.35 14.76

1
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1.0 - Mode 2
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1.0 - Mode 3
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I
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! 1.0 - Mode 4
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FIGURE 3. MODE SHAPES OF AXISYMMETRIC SLOSH MODES (1-4)
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_: The modal frequencies of the present analysis compare reasonably well

" - with those obtained by other investigators. The higher slosh mode frequencies

I could be expected to match more closely those presented by Guyan if the num-

ber of free surface elements was increased from 8 (NASTRAN) to 21 (Guyan).

i This conclusion arises from the common observation that modal frequencies

tend to decrease as the model becomes more refined by increasing the number

i of finite elements. This explains the close match in slosh mode frequency
for the first few modes and the divergence of results in the later modes.

' _ Also contributing to the differe_ices in the NASTRAN results is the effect1
of representing the axlsymmetrlc motions by model_ng a 15 ° sector whereas

_ the other analyses solve the axisymmetric problem directly. The actual
< I integral over the 15° sector in NASTRAN represents a smaller area and,

,_ therefore, hlgher frequencies. This difference would be smaller for smaller

I _ sector angles. However, with 8 free surface elements, the present analysis

i results in good slosh mode frequency agreement (0-20%)I [:

i

; 3.2 SRI TEST TANK

. i

As a further test on the performance of the 3-D analysis of a typical

Ii problem, a series of analyses were run on a real tank model. This actua_model was built and tested by Southwest Research, Inc. and the experimental

results are described in Reference 6. Other analytic results were obtained

using the DYNAS_R axis_-ametrlc program described in Reference 7.

The finite element NAST_AN model is shown in Figure 4. Again, a 15 °

sector was modeled with one layer of elements and two layers of grid points

to solve for the axisymmetric modes.

The mesh size was chosen such that when it was extended to a three-

dimensional half model (12 layers), the number of degrees of freedom (~ 2900)

would be near the maximum for reasonable running time.

The effects of nearly all of the available options in the hydroelastic

system were evaluated with the SRI model. The results are summarized in

I Table 2. The error ratios in terms of the test results are given in

Table 3. Each of the analysis cases is described below.

Test Results - Obtained from Reference 6.
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i
i

i

j TABLE 2. COMPARISONS OF FREQUENCIES FOR SRI TEST TANK
i

Mode Frequencies

Analysis Case

Mode i Mode 2 Mode 3

Test Results 495 835 1255

DYNAS@R Program 531 807 1179

NASTRAN - Phase I Program

Model A - Comp. 519 822 1239

Model B - Comp. 516 826 1239

Model B - Incomp. 541 828 1240

_ Model B - 1/6 Comp. 423 821 1234
L

i NASTRAN - Phase II Program(Model B - Comp.)

Direct - Not _ed_,ced 513 809 1174

Direct - Reduced 612 914 1279

Direct - Ignore G 539 811 1175

i Modal - 30 Modes 568 814 1185
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TABLE 3 COMPARISONS OF FREQUENCY ERRORS

FOR SRI TEST TANK

Freq,,ency Diffarence
Run Ratios (%)
No. Analysis Case ...........

Mode I Mode 2 Mode 3 "

i

Test Results 0 0 0

DYNAS_R Program 7.3 -3.35 -6.1

NASTRAN - Phase I Program

1 Mo@el A - Comp. 4.85 '1.56 -1.28

2 Model B - Comp. 4.25 -1.08 -1.28

3 Model B - Incomp. 9.3 -0.83 -1.20

4 Model B - i/6 Comp. -12.5 -1.68 -1.67

I
NASTRAN - Phase II Program

5 Direct - Not Reduced 3.7 -.3.1 -6.5

6 Direct - Reduced 23.6 9.5 1.9

7 Direct - Ignore G 8.9 -2.9 -6.4

8 Modal - 30 Modes 14.8 -2.5 -5.6

I
...... i

#

l
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iL -]i
DYNAS_R Program- The tank was modeled and run at MSFC on the DYNAS@R

Program.

i NASTR/hN - Phase I Program - The first system delivery contained limited

options and a crude method of calculating area coefficients. Nc over-

i_pping structure/fluid elemen_ were allowed. All runs were made

i using the direct formulation method with no matrix condensation.

I) Model A - Compressible - This model was generated by simply con-

I verting the DYNAS_R data to the NASTRAN format The mesh was similar

to that shown in Figure 4 except that only fo_tr-s_ded elements were

used. The compressibility factor was obtained from the properties

of water. I

2) Model B - Compressible - This was the basic test case using the _J

model shown in Figure with overall compressibil_ty of water. The

second and third modes were excellent but the first mode was

suspiciously high.

3) Model B - Incompressible - The incompressible option was used in

this model to determine its effect. The first mode became worse but

the second and third modes were hardly affected.

4) Model B - 1/6 Compressibilit[ - The compressibility factor was

divided by a factor of 6. The first mode frequency became lower

than the test results with no change in the second and third modes.

_lis indicated that fluid compressibility had affected the test

results. The disFiacement_, in the first mode were primarily bulging

of the tank, with nearly uniform vertical motion of the free surface,

resulting in a net total pressure over the fluid interface. The

second and third modes ccntained little net free surface motion and

net pressure was small. The actual compressibility of the water in

the test was probably lower than the theoretical factor due to

aeration of the water during the vibration testing.

NASTR2uN - Phase II Program - The final delivered program contained more

accurate area factor calculations and the complete set of user options.

The tests given below were run on this version. For comparison with the
• i

preliminary version, Model B with the calculated compressibility was used

i as the basic model.

I
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5) Direct - Not Reduced - The direct method without matrix condensation

was used to compare results with the Phase I program. Results for

the first mode were improved but the second and third modes became

slightly worse.

6) Direct - Reduced - In this case the solution matrices were reducedfrom ~257 degrees of freedom to ~60 degrees of freedom to represent

only shell displacements at every other point. This reduction would

be equivaieut to reducing the three-dimensional model to ~300 degrees

of freedom for eigenvalue extraction. All modes incre-sed in frequency.

7) Direct - Ignore Gravity- The gravity effects were removed from the

! problem which reduced the solution size and the running time. The

small change in results indicates that this is an efficient method for

obtaining structure interaction modes. Low frequency slosh modes may

not be calculated with this method.

8) Modal - 30 Modes - The modal formulation was used in this problem

to reduce the structure matrices to 30 modal coordinates representing

the modes of the empty structure. The error in the first hydro-

elastic mode was due to the fact that its shape was not well repre"

se,L_e_ by the mode shapes of the empty structure. Only three of the

30 empty structure modes participated to any extent in the first mode

of the combined fluid and structure systems.

3.3 TEST RESULT COMMENTS

From the experience of running the test and demonstration problems,

several conclusions may be made regarding the NASTRAN hydroelasti¢ system.

These are listed below.

i. Accuracy of the system was better than expected for the mesh sizes

used in the demonstration problems. With only linear elements and

averaged area factors representing the fluid, three good slosh modes

were obtained from only eight degrees of freedom. It appears that

the accuracy for hydroelastic modes is limited more by the existing ,

NASTRAN structure elements than by the fluid formulation. Results

indicate that 15° sectors are adequate for a cylindrical or sphecical

I sh_[_d fh, id model.

I
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- 2. The results were relatively insensitive to modeling procedures. On

each of the problems, different methods of subdividirg the fluid

_ space into elements were tested. For similar mesh sizes, the changes

• in results were insignificant.

3. The use of either Modal Formulation or Guyan reduction to condense

the structural degrees of freedom tends to increase the natural

frequencies of the system. For the relatively small demonstration

problems, their effects on execution cost were small. However, the

hydroelastic formulation produces dense solution matrices. Large

order problems will require one of these reduction methods.

The drawback to the Guyan reduction method is that it poorly

represents the motions of curved surfaces with uniform loads. For

best use of this method, all displacements normal to the surface

should be retained. In-plane displacements may be omitted without

affecting results since they are not connected to the fluid mass.

Modal formulation is best used when the empty-structure modes

are similar to the coupled fluid modes. Some of the low frequency

combined-system modes do not occur as the lowest modes for the empty

structure. Thus, for some cases, many modal degrees of freedom may

be required to produce accurate results.

4. Although free-surface gravity effects are necessary to obtain pure

sloshing modes, their effect on the hydroelastic modes is small for

most problems. The alternat_ method of constraining the free surface

pressures to zero is more efficient and requires less data input.

5. The overall compressibility factor used in the new method provides

a simple, efficient manner of treating enclosed fluids. It will

produce more accurate results for very stiff tanks such as those

used in the SRI demonstration problem.
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